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in classical types
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Abstract

In our previous paper we suggested a conjecture relating the structure of the small
quantum cohomology ring of a smooth Fano variety of Picard number 1 to the struc-
ture of its derived category of coherent sheaves. Here we generalize this conjecture,
make it more precise, and support it by the examples of (co)adjoint homogeneous vari-
eties of simple algebraic groups of Dynkin types An and Dn, that is, flag varieties
Fl(1, n; n + 1) and isotropic orthogonal Grassmannians OG(2, 2n); in particular, we
construct on each of those an exceptional collection invariant with respect to the entire
automorphism group. For OG(2, 2n) this is the first exceptional collection proved to be
full.

1. Introduction

This paper is devoted to the study of derived categories of coherent sheaves on homogeneous
varieties of semisimple algebraic groups and the relation to their quantum cohomology.

Recall that Dubrovin’s conjecture (see [Dub98]) predicts that the existence of a full excep-
tional collection in the bounded derived category Db(X) of coherent sheaves on a smooth
projective variety X is equivalent to the generic semisimplicity of its big quantum cohomol-
ogy ring BQH(X) (for background on quantum cohomology we refer to [Man99, FP97]). The big
quantum cohomology ring is usually very hard to compute, in contrast to the small quantum
cohomology QH(X). Of course, if QH(X) is generically semisimple, then so is BQH(X). Thus,
from Dubrovin’s conjecture we conclude that generic semisimplicity of QH(X) should imply the
existence of a full exceptional collection in Db(X). On the other hand, it was observed that the
opposite implication is not true; see [CKMPS19, GMS15, Ke19, Per14].

This observation suggests that, on the one hand, some mildly non-simple factors of the general
fiber of QH(X) should not obstruct the existence of a full exceptional collection in Db(X), and
on the other hand, generic semisimplicity of QH(X) should have stronger implications for Db(X)
than just the existence of a full exceptional collection.

In [KS20] we stated for varieties of Picard number 1 a conjecture saying that the structure
of the general fiber of QH(X) determines the structure of the exceptional collection on X. In
this paper we suggest a more general and precise version of this conjecture and support it with
new examples.
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Residual categories for (co)adjoint Grassmannians in classical types

To state the conjecture we will need some notation. First, recall that the index of a smooth
projective variety X is the maximal integer m such that the canonical class KX is divisible
by m in Pic(X); we usually assume that X is a Fano variety over an algebraically closed field of
characteristic zero and write

ωX
∼= OX(−m),

where OX(1) is a primitive ample line bundle on X.
We will say that an exceptional collection E1, . . . , Ek in Db(X) extends to a rectangular

Lefschetz collection, if the collection

E1, E2, . . . , Ek; E1(1), E2(1), . . . , Ek(1); . . . ; E1(m − 1), E2(m − 1), . . . , Ek(m − 1) (1.1)

is also exceptional. The orthogonal complement

R = 〈E1, . . . , Ek; . . . ; E1(m − 1), . . . , Ek(m − 1)〉⊥ ⊂ Db(X) (1.2)

is called the residual category of the above collection. In [KS20, Theorem 2.8] we checked that R

is endowed with an autoequivalence τR : R → R (called the induced polarization of R) such that

τm
R

∼= S−1
R [dimX],

where SR is the Serre functor of R. Thus, τR plays in R the same role as the twist by O(1) plays
in Db(X).

Assume X is a smooth Fano variety and let r be the Picard rank of X, so that QH(X) is an
algebra over the ring Q[q1, . . . , qr] of functions on the affine space Pic(X) ⊗ Q over Q. Let

QHcan(X) := QH(X) ⊗Q[q1,...,qr] C

be the base change of QH(X) to the point of Spec(Q[q1, . . . , qr]) corresponding to the canon-
ical class of X; this is a C-algebra, whose underlying vector space is canonically isomorphic
to H•(X, C). Assume that Hodd(X, C) = 0 and let m be the index of X. Then QHcan(X) is
commutative, so we consider the finite scheme

QSX := Spec(QHcan(X))

and call it the (canonical) quantum spectrum of X. By the dimension axiom for Gromov–Witten
invariants the natural grading of H•(X, C) induces a Z/m-grading of QHcan(X) such that

deg(H2i(X, Q)) ≡ i (mod m),

which gives rise to an action of the group μm on the quantum spectrum QSX .
Furthermore, let

−KX ∈ H2(X, C) ⊂ QHcan(X)

be the anticanonical class. It defines a morphism of algebras C[κ] → QHcan(X), κ 
→ −KX from
a polynomial algebra in the variable κ, which can be understood geometrically as a morphism
of schemes

κ : QSX → A1, (1.3)

which is μm-equivariant for the action on QSX defined above and the standard action on A1.
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A. Kuznetsov and M. Smirnov

Remark 1.1. The notion of quantum spectrum is parallel to that of spectral cover in the theory
of Frobenius manifolds (see [Man99, Her02]). The map (1.3) is analogous to the restriction of a
Landau–Ginzburg potential to its critical locus.

Example 1.2. Let X = Pn, so that r = 1 and m = n + 1. Then

QH(X) ∼= Q[h, q]/(hn+1 − q), hence QHcan(X) ∼= C[h]/(hn+1 − 1).

The quantum spectrum QSPn is the reduced subscheme of A1 with points ζi, 0 ≤ i ≤ n, where ζ is
a primitive (n + 1)th root of unity. The Z/(n + 1)-grading is defined by deg(h) = 1; it induces the
natural action of μn+1 on A1 under which QSPn is invariant. Finally, we have −KX = (n + 1)h,
and the map κ up to rescaling is the natural inclusion QSPn ↪→ A1.

Our conjecture is based on an analogy between the μm-action on QSX and the twist by OX(1)
on Lefschetz exceptional collections in Db(X): in this analogy the parts of QSX supported over
the complement of the origin and the origin of A1 (with respect to the map κ)

QS×
X := κ−1(A1 \ {0}), QS◦

X := QSX \QS×
X ,

correspond to the rectangular part and the residual category of the Lefschetz collection. Note
that the μm-action on QS×

X is free (because it is free on A1 \ {0}), hence there exists a finite
subscheme Z ⊂ QS×

X such that the action map μm × Z → QS×
X is an isomorphism; the length

of Z is equal to the length of QS×
X divided by m, and we consider it as an analogue of the

subcollection E1, . . . , Ek in (1.1).
Note that generic semisimplicity of BQH(X) assumed in the following conjecture implies the

vanishing of Hodd(X, C) assumed above by [HMT09, Theorem 1.3].

Conjecture 1.3. Let X be a Fano variety of index m over an algebraically closed field
of characteristic zero and assume that the big quantum cohomology BQH(X) is generically
semisimple.

(i) There is an Aut(X)-invariant exceptional collection E1, . . . , Ek in Db(X), where k is
the length of QS×

X divided by m; this collection extends to a rectangular Lefschetz
collection (1.1) in Db(X).

(ii) The residual category R of this collection (defined by (1.2)) has a completely orthogonal
Aut(X)-invariant decomposition

R =
⊕

ξ∈QS◦
X

Rξ

with components indexed by closed points ξ ∈ QS◦
X ; moreover, the component Rξ of the

category R is generated by an exceptional collection of length equal to the length of the
localization (QS◦

X)ξ at ξ.
(iii) The induced polarization τR permutes the components Rξ of R; more precisely, for each

point ξ ∈ QS◦
X it induces an equivalence

τR : Rξ
∼−−→ Rg(ξ),

where g is a generator of μm.
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Residual categories for (co)adjoint Grassmannians in classical types

Note that any exceptional object on X is invariant with respect to any connected reductive
group acting on X (see [Pol11, Lemma 2.2]); however, the group Aut(X) is not connected in
general. Thus, Aut(X)-invariance of the collection is an extra constraint (cf. the discussions
in §§ 2.1 and 3.2).

Considerations from the introduction of [KS20] provide a homological mirror symmetry jus-
tification for Conjecture 1.3 (except possibly for the Aut(X)-invariance statements, and for the
action of τR on the residual category).

If the Picard rank of X is 1, so that QH(X) is a Q[q]-algebra, we have

QH(X) ⊗Q[q] Q(q) ∼= (QH(X) ⊗Q[q] Q) ⊗Q Q(q)

because QH(X) is Z-graded with deg(q) = m, hence semisimplicity of QHcan(X) is equivalent to
generic semisimplicity of QH(X). Moreover, if QH(X) is generically semisimple the length of each
localization (QS◦

X)ξ is 1, thus Conjecture 1.3 predicts the existence in Db(X) of a rectangular
Lefschetz collection whose residual category is generated by a completely orthogonal exceptional
collection, which is equivalent to the prediction of [KS20, Conjecture 1.12]. In particu-
lar, numerous examples listed in the introduction to [KS20] together with the main result
of [KS20] support both conjectures.

Let us also discuss a couple of simple examples of varieties with higher Picard rank.

Example 1.4. Let X = Pn × Pn, so that r = 2 and m = n + 1. By the quantum Künneth formula
(see [Kau96, KM96]) we have

QH(X) ∼= QH(Pn) ⊗Q QH(Pn) ∼= Q[h1, h2, q1, q2]/(hn+1
1 − q1, hn+1

2 − q2).

The canonical class direction corresponds to q1 = q2, so the canonical quantum cohomology ring
can be computed by specializing both q1 and q2 to 1:

QHcan(X) ∼= C[h1, h2]/(hn+1
1 − 1, hn+1

2 − 1).

Its spectrum QSX is a reduced scheme of length (n + 1)2 with points (ζi, ζj), 0 ≤ i, j ≤ n,
where ζ is the primitive (n + 1)th root of unity. The function κ (up to rescaling) is given by the
formula κ = h1 + h2, so κ(ζi, ζj) = ζi + ζj and

QS◦
X =

{
∅, if n = 2k is even,

{(ζi, ζk+1+i)}, if n = 2k + 1 is odd.
(1.4)

Furthermore, the generator of μn+1 acts by (ζi, ζj) 
→ (ζi+1, ζj+1); in particular the action of the
group μn+1 on QS◦

X is simply transitive.
The formula (1.4) exhibits a difference between the case of even and odd n; it also appears

on the level of derived category. If n = 2k, the collection of 2k + 1 line bundles

A = 〈O, O(1, 0), O(0, 1), . . . ,O(k, 0), O(0, k)〉 (1.5)

extends to an Aut(X)-invariant rectangular Lefschetz collection Db(X) = 〈A, . . . ,A(n)〉 of total
length (n + 1)(2k + 1) = (n + 1)2, whose residual category is zero (this can be easily proved by
the argument of Lemma 2.4).

If n = 2k + 1, the collection (1.5) still extends to an Aut(X)-invariant rectangular Lefschetz
collection in Db(X), this time of length (n + 1)n, and it can be checked (a similar computation
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in a more complicated situation can be found in § 2) that its residual category is generated
by n + 1 = 2k + 2 completely orthogonal exceptional vector bundles

F1 = O(−1, k),

F2 = τR(F1) ∼= O � Ωk+1(k + 1),

F3 = τR(F2) ∼= O(1) � Ωk+2(k + 2),

...

Fk+2 = τR(Fk+1) ∼= O(k) � Ω2k+1(2k + 1) ∼= O(k,−1),

Fk+3 = τR(Fk+2) ∼= Ωk+1(k + 1) � O,

Fk+4 = τR(Fk+3) ∼= Ωk+2(k + 2) � O(1),

...

F2k+2 = τR(F2k+1) ∼= Ω2k(2k) � O(k − 1)

(where isomorphisms are up to shift). Note that the action of τR on this exceptional collection
is simply transitive, analogously to the action of μn+1 on QS◦

X .

Example 1.5. Let X = (P1)n, so that r = n and m = 2. Applying again the quantum Künneth
formula, one can check that

QS(P1)n = {(±1,±1, . . . ,±1)} ⊂ An

is a reduced scheme of length 2n and the function κ is given by the sum of coordinates. Therefore,
QS◦

(P1)n is empty when n is odd, while for even n = 2k it contains exactly
(
2k
k

)
points, and the

μ2-action splits this set into 1
2

(
2k
k

)
free orbits.

At the level of derived categories the same thing happens. If n is odd, a rectangular
Aut((P1)n)-invariant Lefschetz collection in Db((P1)n) with zero residual category was con-
structed in [Mir21, Theorem 4.1]. If n = 2k is even, using [Mir21, Theorem 4.1], it is easy to
show that the residual category is generated by

(
2k
k

)
exceptional line bundles and the τR-action

swaps them (up to shift) pairwise.

Using other results from [Mir21], one can verify Conjecture 1.3 for some other products
of projective spaces (Pn)k. In all these examples, however, the ring QHcan(X) is semisimple.
Below we discuss more intricate examples with non-semisimple ring QHcan(X), provided by
homogeneous varieties of simple algebraic groups, where quite a lot is known both about quantum
cohomology and derived categories.

Perhaps the most interesting case here is that of adjoint and coadjoint homogeneous vari-
eties. Recall that an adjoint (respectively, coadjoint) homogeneous variety of a simple algebraic
group G is the highest weight vector orbit in the projectivization of the irreducible G-
representation, whose highest weight is the highest long (respectively, short) root of G; in
particular, if the group G is simply laced, the adjoint and coadjoint varieties coincide.
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For classical Dynkin types adjoint and coadjoint varieties are as follows:

Dynkin type Group G Adjoint variety Coadjoint variety

An SL(n + 1) Fl(1, n; n + 1) Fl(1, n; n + 1)
Bn Spin(2n + 1) OG(2, 2n + 1) Q2n−1

Cn Sp(2n) P2n−1 IG(2, 2n)
Dn Spin(2n) OG(2, 2n) OG(2, 2n)

Here Fl(1, n; n + 1) is the partial flag variety, Q2n−1 is a (smooth) quadric of dimension 2n − 1,
while IG(2, 2n), OG(2, 2n), and OG(2, 2n + 1) are the symplectic and orthogonal isotropic
Grassmannians of two-dimensional subspaces, respectively. Note that the Picard rank of a
(co)adjoint variety is 1, except for the An-case, where it is 2.

The small quantum cohomology ring of (co)adjoint varieties was computed in [BKT09, CP11,
Cio99, Kim95] in terms of generators and relations. Using these results, the fiber QS◦

X of the
map κ defined in (1.3) was computed by Nicolas Perrin and the second named author in [PS].
To state the results of [PS] we will need some notation.

Let T(G) be the Dynkin diagram of G, and let Tshort(G) be the subdiagram of T(G) with
vertices corresponding to short roots. For the reader’s convenience we collect the resulting Dynkin
types in a table:

T An Bn Cn Dn En F4 G2

Tshort An A1 An−1 Dn En A2 A1

The following theorem describes QS◦
X for adjoint and coadjoint varieties.

Theorem 1.6 [PS]. Let Xad and Xcoad be the adjoint and coadjoint varieties of a simple

algebraic group G, respectively.

(i) If T(G) = A2n, then QS◦
Xad = QS◦

Xcoad = ∅.

(ii) If T(G) �= A2n, then QS◦
Xcoad is a single non-reduced point and the localization of the

scheme QHcan(Xcoad) at this point is isomorphic to the Jacobian ring of a simple

hypersurface singularity of type Tshort(G).
(iii) If T(G) is simply laced, then we have Xad = Xcoad and QS◦

Xad = QS◦
Xcoad .

(iv) If T(G) is not simply laced, then QS◦
Xad = ∅.

A combination of Theorem 1.6 with Conjecture 1.3 allows us to make predictions about the
structure of derived categories of adjoint and coadjoint varieties. Our expectation is stated in
the following two conjectures.

Conjecture 1.7. Let X be the adjoint variety of a simple algebraic group G over an alge-
braically closed field of characteristic zero. If T(G) is not simply laced, then Db(X) has a full
Aut(X)-invariant rectangular Lefschetz exceptional collection.

Conjecture 1.8. Let X be the coadjoint variety of a simple algebraic group G over an alge-
braically closed field of characteristic zero. Then Db(X) has an Aut(X)-invariant rectangular
Lefschetz exceptional collection with residual category R and

(i) if T(G) = An and n is even, then R = 0;

1177

https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007090
Downloaded from https://www.cambridge.org/core. Max Planck Institut für Mathematik, on 04 Jun 2021 at 17:38:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007090
https://www.cambridge.org/core


A. Kuznetsov and M. Smirnov

(ii) otherwise, R is equivalent to the derived category of representations of a quiver of Dynkin
type Tshort(G).

In non-simply laced Dynkin types Bn, Cn, F4, and G2 these expectations agree with known
results about Db(X). Indeed, for adjoint varieties full rectangular Lefschetz decompositions were
constructed in [Kuz08, Theorem 7.1] for type Bn, [KS20, Example 1.4] for type Cn, and [Kuz06,
§ 6.4] for type G2. For coadjoint varieties the residual categories were computed in [CKMPS19,
Theorem 9.6] for type Cn, [KS20, Example 1.6] for types Bn and G2, and [BKS21, Theorem 1.4]
for type F4. So, the only non-simply laced case that is still not known is that of the adjoint
variety of type F4.

The main result of this paper is the proof of Conjecture 1.8 for Dynkin types An and Dn.
Since these Dynkin types are simply laced, the coadjoint and adjoint varieties coincide.

Theorem 1.9. Let X be the (co)adjoint variety of a simple algebraic group G of Dynkin

type An or Dn over an algebraically closed field of characteristic zero. Then Db(X) has an

Aut(X)-invariant rectangular Lefschetz exceptional collection with residual category R and

(i) if T(G) = An and n is even, then R = 0;

(ii) if T(G) = An and n is odd, then R ∼= Db(An);
(iii) if T(G) = Dn, then R ∼= Db(Dn);

where Db(An) and Db(Dn) are the derived categories of representations of quivers of Dynkin

types An and Dn, respectively.

More precise versions of these results can be found in Theorem 2.1 (for type An) and
Theorem 3.1 (for type Dn) below. We leave the remaining exceptional types E6, E7, E8,
and F4 for future work.

Note that a part of the statement of this theorem is a construction of a full exceptional
collection in Db(OG(2, 2n)), which was not known before (see [KP16] for a survey of results
about exceptional collections on homogeneous varieties).

Remark 1.10. As one can see from Theorem 1.6 and Conjecture 1.8, the case of Dynkin type An

with even n is somewhat special. In this case, the Picard rank is equal to 2, and the canonical
quantum cohomology ring QHcan(X) is semisimple, so a singularity of type Tshort(G) = An does
not show up. However, one can see this singularity in the skew-canonical quantum cohomol-
ogy ring, that is, the ring obtained from QH(X) by base change to the point of Pic(X) ⊗ Q

corresponding to the line bundle O(1,−1). It would be very interesting to find a categorical
interpretation of this fact.

2. Type An

In this section we prove parts (i) and (ii) of Theorem 1.9, restated in a more precise form in
Theorem 2.1 below. We work over an arbitrary field k.

2.1 Statement of the theorem
Let V be a vector space of dimension n + 1. Throughout this section we put

X = Fl(1, n; n + 1) = Fl(1, n; V ) ⊂ P(V ) × P(V ∨);

note that in this embedding X is a hypersurface of bidegree (1, 1).
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The automorphism group of X is the semidirect product

Aut(X) ∼= PGL(V ) � Z/2,

where the factor Z/2 acts by an outer automorphism (corresponding to the symmetry of the
Dynkin diagram An) that is induced by the morphism

σB : P(V ) × P(V ∨) B×B−1−−−−−−→ P(V ∨) × P(V )

given by a choice of non-degenerate bilinear form B on V .
It is elementary to construct a rectangular Lefschetz decomposition for Db(X) by using the

Pn−1-fibration structure X → P(V ) of X (see the proofs of Lemmas 2.4 and 2.5). This Lefschetz
decomposition is automatically PGL(V )-invariant and its residual category is trivial. However,
it is not Aut(X)-invariant, since the outer automorphism takes it to a decomposition associated
with the other Pn−1-fibration X → P(V ∨), and so does not preserve the original one.

In this section we construct in Db(X) a rectangular Aut(X)-invariant Lefschetz collection
and compute its residual category. To state the result we need some notation. Let

0 ↪→ U1 ↪→ Un ↪→ V ⊗ O

be the tautological flag of rank-1 and rank-n subbundles in the trivial vector bundle. We set

E := Un/U1 (2.1)

for the intermediate quotient. Note that σ∗
BE ∼= E∨ and det(E) ∼= O(1,−1), where we denote

by O(a1, a2) the restriction to X of the line bundle O(a1) � O(a2) on P(V ) × P(V ∨).
We prove the following theorem.

Theorem 2.1. Set k := n/2�. The collection of 2k + 1 line bundles

A := 〈O(0, 0), O(1, 0), O(0, 1), O(2, 0), O(0, 2), . . . ,O(k, 0), O(0, k)〉 (2.2)

in Db(X) is exceptional and extends to an Aut(X)-invariant semiorthogonal decomposition

Db(X) = 〈R, A, A ⊗ O(1, 1), . . . ,A ⊗ O(n − 1, n − 1)〉 (2.3)

where R is the residual category.

(1) If n = 2k the residual category is zero.

(2) If n = 2k + 1 the residual category is generated by the Aut(X)-invariant exceptional

collection

R = 〈O(−1, k),O(k,−1); E(−1, k − 1), E∨(k − 1,−1);

. . . ; Λk−1E(−1, 1), Λk−1E∨(1,−1); ΛkE(−1, 0) ∼= ΛkE∨(0,−1)〉 (2.4)

of length n = 2k + 1 and is equivalent to the derived category of the Dynkin quiver An.

In Remark 2.9 we provide a description of A and R in terms of weights of SL(n + 1).
In Corollary 2.3 we check that the collection of line bundles defining the rectangular part

of (2.3) is exceptional. Furthermore, in Lemma 2.4 (for even n) and Lemma 2.6 (for odd n) we
extend it to a full exceptional collection of line bundles. In the construction we use the advantage
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A. Kuznetsov and M. Smirnov

of already knowing a full exceptional collection on X (thanks to the Pn−1-fibration mentioned
above), so it is enough to rearrange it appropriately by a sequence of mutations (we refer
to [IK15, §2.3] for a summary of results we need; [IK15, Lemma 2.13] is especially useful).
Part (1) of the theorem is proved in Lemma 2.4 and part (2) in Lemma 2.8.

For verifications of exceptionality we will need the following lemma.

Lemma 2.2. If either of the following four conditions

1 − n ≤ a ≤ −1, or 1 − n ≤ b ≤ −1, or (a, b) = (0,−n), or (a, b) = (−n, 0)

is satisfied, then the cohomology H•(X, O(a, b)) vanishes.

Proof. Consider the standard exact sequence

0 → OP(V )×P(V ∨)(a − 1, b − 1) → OP(V )×P(V ∨)(a, b) → O(a, b) → 0.

If any of the conditions listed in the lemma is satisfied, then

H•(P(V ) × P(V ∨), OP(V )×P(V ∨)(a, b)) and H•(P(V ) × P(V ∨), OP(V )×P(V ∨)(a − 1, b − 1))

vanish, hence H•(X, O(a, b)) vanishes as well. �

One of the consequences of this computation is the following corollary.

Corollary 2.3. The collection of objects on the right-hand side of (2.2) is an exceptional

collection. Moreover, the components A ⊗ O(t, t) in (2.3) are semiorthogonal for 0 ≤ t ≤ n − 1.

Proof. To prove the corollary we need to show that

Ext•(O(j + t, t), O(i, 0)) = H•(X, O(i − j − t,−t))

and

Ext•(O(t, j + t), O(i, 0)) = H•(X, O(i − t,−j − t))

both vanish when 0 ≤ i, j ≤ k and 1 ≤ t ≤ n − 1.
The first vanishing is clear since 1 − n ≤ −t ≤ −1 and Lemma 2.2 applies. The second van-

ishing also follows if −j − t ≥ 1 − n. So, assume −j − t ≤ −n. Then t ≥ n − j ≥ n − k, hence
i − t ≤ k − (n − k) = 2k − n ≤ 0. Since also i − t ≥ −t ≥ 1 − n, the vanishing also follows from
Lemma 2.2, unless i − t = 0. But then we must have i = j = t = k and n = 2k, so that the
corresponding line bundle is O(0,−n), and its cohomology vanishes, again by Lemma 2.2. �

We denote the natural projections of X by

p1 : X → P(V ) and p2 : X → P(V ∨).

For any pair of coherent sheaves on P(V ) and P(V ∨) we set

F1 �X F2 := p∗1F1 ⊗ p∗2F2
∼= (F1 � F2)|X .

2.2 Even n

In this section we prove Theorem 2.1 for even n.
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Residual categories for (co)adjoint Grassmannians in classical types

Lemma 2.4. If n = 2k then Db(X) = 〈A, A ⊗ O(1, 1), . . . ,A ⊗ O(2k − 1, 2k − 1)〉, where A is

defined by (2.2).

Proof. The P2k−1-fibration p1 gives rise to the semiorthogonal decomposition

Db(X) =
〈
p∗1(D

b(P(V ))), p∗1(D
b(P(V ))) ⊗ O(0, 1), . . . , p∗1(D

b(P(V ))) ⊗ O(0, 2k − 1)
〉
.

Choosing the exceptional collection

Db(P(V )) = 〈O(i − k), O(i − k + 1), . . . ,O(i + k)〉
in the ith component, we obtain a full exceptional collection in Db(X) that takes the form

Db(X) = 〈O(−k, 0), O(1 − k, 0), . . . ,O(k, 0),

O(1 − k, 1), O(2 − k, 1), . . . ,O(k + 1, 1),

. . .

O(k − 1, 2k − 1), O(k, 2k − 1), . . . ,O(3k − 1, 2k − 1)〉.

(2.5)

The collection is shown in Figure 1, the objects are represented by black dots.

Figure 1. Mutation of (2.5) to a rectangular Lefschetz collection for k = 3.

Now we perform a mutation: we consider the subcollection formed by the first k terms of the
first line, the first k − 1 terms of the second line, and so on, up to the first term of the kth line
of (2.5):

{O(−k, 0), O(1 − k, 0), . . . ,O(−1, 0);

O(1 − k, 1), . . . ,O(−1, 1);

. . .
...

O(−1, k − 1)}

(2.6)

(this subcollection is depicted by the triangle on the left in Figure 1) and mutate it to the far
right of the exceptional collection. Using Lemma 2.2, it is easy to see that the objects in (2.6)
are right-orthogonal to the objects in the rest of (2.5). Hence, their mutation to the far right is
realized by the anticanonical twist (see, for example, [IK15, Lemma 2.13]). As ω−1

X
∼= O(2k, 2k),

this replaces the black dots in the triangle by the white dots in the dashed triangle in Figure 1.
All that remains is to note that the resulting full exceptional collection is precisely the

collection
〈A, A ⊗ O(1, 1), . . . ,A ⊗ O(2k − 1, 2k − 1)〉.
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A. Kuznetsov and M. Smirnov

Indeed, the blocks formed by the twists of the subcategory A correspond to the L-shapes in
figure, and their semiorthogonality was proved in Corollary 2.3. �

2.3 Odd n: rectangular part
From now on we set n = 2k + 1. First, we use the trick of Lemma 2.4 to construct a full excep-
tional collection that includes the rectangular part of (2.3) as a subcollection. In this case this
is slightly more complicated, so we split the construction into two steps.

Lemma 2.5. The category Db(X) has the following full exceptional collection:

Db(X) = 〈O(−k, 0), O(1 − k, 0), . . . ,O(k + 1, 0),

O(1 − k, 1), O(2 − k, 1), . . . ,O(k + 2, 1),

. . .

O(−1, k − 1), O(0, k − 1), . . . ,O(2k, k − 1),

O(−1, k), O(0, k), . . . ,O(2k, k),

O(0, k + 1), O(1, k + 1), . . . ,O(2k + 1, k + 1),

. . .

O(k − 1, 2k), O(k, 2k), . . . ,O(3k, 2k)〉.

(2.7)

A graphical representation for the collection in case k = 3 can be found in Figure 2. The
objects depicted by black dots and grey crosses (red online) form the collection (2.7); the rows
of (2.7) correspond to rows in the figure (and the shifts of rows match up). The mutation of
Lemma 2.6 will take the objects corresponding to the black dots in the left triangle to the
objects corresponding to white dots in the dashed triangle at the top. The L-shaped figures
correspond to blocks of the rectangular Lefschetz collection (the first of them is (2.2)).

Figure 2. (Colour online) Mutation of (2.7) to a rectangular Lefschetz collection for k = 3.

Proof. The P2k-fibration p1 gives rise to the semiorthogonal decomposition

Db(X) =
〈
p∗1(D

b(P(V ))), p∗1(D
b(P(V ))) ⊗ O(0, 1), . . . , p∗1(D

b(P(V ))) ⊗ O(0, 2k)
〉
.

This time for the first k components (i.e. for 0 ≤ i ≤ k − 1) we choose the collection

Db(P(V )) = 〈O(i − k), O(i − k + 1), . . . ,O(i + k + 1)〉,
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Residual categories for (co)adjoint Grassmannians in classical types

and for the last k + 1 components (i.e. for k ≤ i ≤ 2k) we choose the collection

Db(P(V )) = 〈O(i − k − 1), O(i − k), . . . ,O(i + k)〉.
As a result, we obtain (2.7). �

It follows from Lemma 2.2 that the only non-trivial Ext-spaces among the objects in
Figure 2 are those going in the upper-right direction and additionally, there is a non-trivial
Ext-space

Ext2k(O(2k, k − 1), O(−1, k)) = k (2.8)

from the rightmost grey cross (red online) to the leftmost one.
Now we consider the same subcollection (2.6) as in the proof of Lemma 2.4 (this subcollection

is depicted by the triangle on the left in Figure 2) and mutate it to the far right of the exceptional
collection. It follows from the description of Lemma 2.2 that the objects in (2.6) are right-
orthogonal to the objects in the rest of (2.7). As in Lemma 2.4, their mutation to the far right is
realized by the anticanonical twist. As ω−1

X
∼= O(2k + 1, 2k + 1), we deduce the following lemma.

Lemma 2.6. The category Db(X) has the following full exceptional collection:

Db(X) = 〈O(0, 0), O(1, 0), . . . ,O(k + 1, 0),

O(0, 1), O(1, 1), . . . ,O(k + 2, 1),

. . .

O(0, k − 1), O(1, k − 1), . . . ,O(2k, k − 1),

O(−1, k), O(0, k), . . . ,O(2k, k),

O(0, k + 1), O(1, k + 1), . . . ,O(2k + 1, k + 1),

. . .

O(k − 1, 2k), O(k, 2k), . . . ,O(3k, 2k),

O(k + 1, 2k + 1), O(k + 2, 2k + 1), . . . ,O(2k, 2k + 1),

O(k + 2, 2k + 2), . . . ,O(2k, 2k + 2),

. . .

O(2k, 3k)〉.

(2.9)

The resulting collection in the case k = 3 is shown in Figure 2: the objects corresponding to
the black dots in the lower-left triangle are replaced by the white dots in the upper-right triangle;
the rows of (2.9) correspond to the rows in the figure (and the shifts of rows match).

2.4 Odd n: residual category
We note that the resulting exceptional collection (2.9) is already quite close to what we need.
For instance, it already contains the rectangular part of (2.3). Indeed, the blocks A ⊗ O(i, i)
of (2.3) are generated by the objects corresponding to the dots in Figure 2 joined into L-shaped
figures.

However, the objects which are not in the rectangular part,

O(k + 1, 0), O(k + 2, 1), . . . ,O(2k, k − 1), O(−1, k), O(0, k + 1), O(1, k + 2), . . . ,O(k − 1, 2k)
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(they are marked with grey crosses (red online) in the figure), are not yet right-orthogonal to
the rectangular part (hence are not yet contained in the residual category). The next step is to
mutate them accordingly.

Proposition 2.7. If R ⊂ Db(X) is the residual category of the rectangular collection defined

by (2.3), then R is generated by the exceptional collection

R = 〈Ωk+1(k + 1) �X O, Ωk+2(k + 2) �X O(1), . . . ,Ω2k(2k) �X O(k − 1),

O(−1, k),

O �X Ωk+1(k + 1), O(1) �X Ωk+2(k + 2), . . . ,O(k − 1) �X Ω2k(2k)〉. (2.10)

The only non-trivial Ext-spaces between the objects of this exceptional collection are

Hom(Ωk+i−1(k + i − 1) �X O(i − 2), Ωk+i(k + i) �X O(i − 1)) = k, 2 ≤ i ≤ k,

Hom(Ω2k(2k) �X O(k − 1), O(−1, k)) = k,

Extk(O(−1, k), O �X Ωk+1(k + 1)) = k,

Hom(O(i − 2) �X Ωk+i−1(k + i − 1), O(i − 1) �X Ωk+i(k + i)) = k, 2 ≤ i ≤ k.

(2.11)

In particular, R is equivalent to the derived category of the Dynkin quiver A2k+1.

Proof. It follows from Lemma 2.2 that the object O(−1, k) (corresponding to the circled grey
cross (red online) in Figure 2) is already in the residual category, so it is enough to mutate the
other 2k objects.

Consider the exact sequences

0 → Ωk+i(k + i) �X O(i − 1) →Λk+iV ∨ ⊗ O(0, i − 1) →
· · · → V ∨ ⊗ O(k + i − 1, i − 1) → O(k + i, i − 1) → 0 (2.12)

obtained by an appropriate twist of the pullback to X of the truncated Koszul complex on P(V ),
and analogous exact sequences

0 → O(i − 1) �X Ωk+i(k + i) →Λk+iV ⊗ O(i − 1, 0) →
· · · → V ⊗ O(i − 1, k + i − 1) → O(i − 1, k + i) → 0. (2.13)

If we show that the objects Ωk+i(k + i) �X O(i − 1) and O(i − 1) �X Ωk+i(k + i) belong to R,
it will follow that these exact sequences express mutations of O(k + i, i − 1) and O(i − 1, k + i)
through the rectangular part of (2.3), and that together with the object O(−1, k) these objects
generate the residual category R.

So, we need to check that Ext•(O(a, b),−) = H•(X,−⊗ O(−a,−b)) vanishes on these objects
when O(a, b) run through the set of objects generating the rectangular part of (2.3), that is, for

0 ≤ a ≤ b ≤ a + k ≤ 3k and 0 ≤ b ≤ a ≤ b + k ≤ 3k. (2.14)

We have exact sequences on P(V ) × P(V ∨),

0 → Ωk+i(k + i − 1) � O(i − 2) → Ωk+i(k + i) � O(i − 1) → Ωk+i(k + i) �X O(i − 1) → 0.
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Residual categories for (co)adjoint Grassmannians in classical types

To compute H•(X, Ωk+i(k + i − a) �X O(i − 1 − b)) we thus need to compute two tensor
products:

H•(P(V ), Ωk+i(k + i − a)) ⊗ H•(P(V ∨), O(i − 1 − b)),

H•(P(V ), Ωk+i(k + i − 1 − a)) ⊗ H•(P(V ∨), O(i − 2 − b)).
(2.15)

By Bott’s formula [Bot57, Proposition 14.4] the first factors in these products are zero, except
for

a ≤ −1, or a = k + i, or a ≥ 2k + 2,

a ≤ −2, or a = k + i − 1, or a ≥ 2k + 1
(2.16)

(the conditions in the first (respectively, second) line of (2.16) corresponds to non-vanishing of
the first factors in the first (respectively, second) line in (2.15)). Similarly, the second factors
vanish except for

b ≤ i − 1, or b ≥ 2k + i + 1,

b ≤ i − 2, or b ≥ 2k + i
(2.17)

(with the same convention about the role of the lines). Clearly, (2.14) is not compatible with
the conditions a ≤ −1 or a ≤ −2 in (2.16). Furthermore, (2.14) implies that |a − b| ≤ k, which
contradicts all conditions in (2.16) and (2.17), except for those in the last columns. However,
in the latter case both a and b are strictly bigger than 2k (recall that 1 ≤ i ≤ k), which also
contradicts (2.14).

Thus, we conclude that for all (a, b) satisfying (2.14) either of the factors in the ten-
sor products (2.15) vanishes, hence the objects Ωk+i(k + i) �X O(i − 1) belong to the residual
category R. By symmetry it also follows that the objects O(i − 1) �X Ωk+i(k + i) belong to R.
Thus, all the objects on the right-hand side of (2.10) are in R. Moreover, as we already pointed
out, it also follows that (2.12) and (2.13) are mutation sequences. Therefore, together with the line
bundle O(−1, k) the objects on the right-hand side of (2.10) generate R.

Similarly, from Lemma 2.2 and the mutation sequences, orthogonality between the rows
of (2.10) follows, so all that remains is to compute Ext-spaces between objects in each row as
well as from objects in the first row to O(−1, k), and from O(−1, k) to objects in the last row.

For this we use (2.12) and (2.13) as resolutions for the source objects. Since almost all terms
in these sequences are in the rectangular part of (2.3), it follows that it is enough to compute
Ext-spaces from the rightmost objects only (i.e. for the grey crosses (red online) from Figure 2).
Thus, we need to describe the tensor products in (2.15) for (a, b) satisfying

0 ≤ a ≤ k − 1, b = a + k + 1 or 0 ≤ b ≤ k − 1, a = b + k + 1.

Clearly, the assumption 0 ≤ a ≤ k − 1 contradicts all conditions in (2.16). On the other hand,
if 0 ≤ b ≤ k − 1 and a = b + k + 1, then a ≤ 2k, so the only compatible conditions are

(a, b) = (k + i, i − 1) or (a, b) = (k + i − 1, i − 2).

Furthermore, in the first of these cases the first tensor product in (2.15) is one-dimensional (and
lives in cohomological degree k + i), and in the second of these cases the second tensor product
is one-dimensional (and lives in the same cohomological degree). This computation proves that
the only Ext-spaces between the objects in the first and the last rows of (2.10) are those listed
in the first and last lines of (2.11).
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Next, we compute Ext-spaces from objects in the first row of (2.10) to O(−1, k). As before,
we use (2.12) as resolutions. The only object that appears in (2.12) which is not semiorthogonal
to O(−1, k) is O(2k, k − 1) (see Lemma 2.2 and (2.8)), from which we have a one-dimensional
Ext-space in degree 2k. Therefore, the only Ext-space from objects of the first row to O(−1, k)
is given by the second line of (2.11).

Finally, we compute Ext-spaces from O(−1, k) to objects in the last row of (2.10). First, we
consider the Koszul exact sequence

0 → O(−1, k) → Λ2k+1V ∨ ⊗ O(0, k) → · · · → V ∨ ⊗ O(2k, k) → O(2k + 1, k) → 0.

All its terms (except for the leftmost and rightmost) are in the rectangular part of (2.3), hence

Extp(O(−1, k), O(i − 1) �X Ωk+i(k + i)) ∼= Extp+2k+1(O(2k + 1, k), O(i − 1) �X Ωk+i(k + i)).

Now we use (2.13) as a resolution for O(i − 1) �X Ωk+i(k + i). Clearly, the only non-trivial
Ext-space from O(2k + 1, k) to its terms is

Ext2k(O(2k + 1, k), O(0, k + 1)) ∼= H2k(X, O(−2k − 1, 1)) ∼= k

(which holds for i = k + 1). Therefore, the only Ext-space from O(−1, k) to the last row of (2.3)
is given by the third line of (2.11).

It is clear from the above description of Ext-spaces that the category R is equivalent to the
derived category of the Dynkin quiver A2k+1 (with the objects in (2.10) corresponding to simple
representations of the quiver, up to shift). �

So far, the description of R we obtained does not look symmetric with respect to outer
automorphisms of X, and also looks different from the description in Theorem 2.1. In the next
statement we show that the two descriptions agree.

Lemma 2.8. The category R defined by (2.10) is generated by the exceptional collection (2.4).

Proof. The definition (2.1) of the object E can be rewritten as the exact sequence

0 → E → T(−1) �X O → O(0, 1) → 0. (2.18)

It follows that rk(E) = 2k and det(E) ∼= O(1,−1), hence

ΛiE∨ ∼= Λ2k−iE ⊗ O(−1, 1). (2.19)

Dualizing (2.18), we obtain

0 → O(0,−1) → Ω(1) �X O → E∨ → 0.

Taking its (k + i)th exterior power and twisting by O(0, i − 1), we obtain

0 → Λk+i−1E∨(0, i − 2) → Ωk+i(k + i) �X O(i − 1) → Λk+iE∨(0, i − 1) → 0.

Using (2.19), we can rewrite this as

0 → Λk−i+1E(−1, i − 1) → Ωk+i(k + i) �X O(i − 1) → Λk−iE(−1, i) → 0. (2.20)

Now we interpret these sequences as mutations of (2.10).
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– For i = k, the second arrow in (2.20) is the unique (by (2.11)) morphism

Ω2k(2k) �X O(k − 1) → O(−1, k),

therefore its kernel (up to shift) is the right mutation of Ω2k(2k) �X O(k − 1) through the
line bundle O(−1, k), and so by (2.20) the result of the mutation is E(−1, k − 1).

– For i = k − 1, the second arrow in (2.20) is the unique morphism

Ω2k−1(2k − 1) �X O(k − 2) → E(−1, k − 1),

therefore its kernel (up to shift) is the right mutation of Ω2k−1(2k − 1) �X O(k − 2) through
the bundle E(−1, k − 1), and so the result of the mutation is Λ2E(−1, k − 2). Note here that
the intermediate mutation of Ω2k−1(2k − 1) �X O(k − 2) through O(−1, k) is trivial, because
these objects are completely orthogonal by (2.11).

Continuing in the same manner, we conclude that the mutation of the vector bundle
Ω2k−j(2k − j) �X O(k − j − 1) through

〈Ω2k−j+1(2k − j + 1) �X O(k − j), . . . ,Ω2k(2k) �X O(k − 1), O(−1, k)〉

is the same as its mutation through 〈O(−1, k), E(−1, k − 1), . . . ,ΛjE(−1, k − j)〉, and is the same
as its mutation through the last object ΛjE(−1, k − j). Therefore, it is realized by the complex
(2.20) with i = k − j, hence the result of the mutation is Λj+1E(−1, k − j − 1).

Thus, we see that the category R is generated by the exceptional collection

R = 〈O(−1, k),E(−1, k − 1), . . . ,Λk−1E(−1, 1), ΛkE(−1, 0),

O �X Ωk+1(k + 1), O(1) �X Ωk+2(k + 2), . . . ,O(k − 1) �X Ω2k(2k)〉, (2.21)

and moreover, the only Ext-spaces between the objects in the first row and the second row
of (2.21) are

Ext•(ΛiE(−1, k − i), O(j − 1) �X Ωk+j(k + j)) =

{
k[i − k], if j = 1

0, if 2 ≤ j ≤ k.
(2.22)

Note also that by (2.19) the last term in the first line of (2.21) is isomorphic to ΛkE∨(0,−1).
For the second half of mutations, we note that, applying an outer automorphism of X

to (2.20), we obtain exact sequences

0 → Λk−i+1E∨(i − 1,−1) → O(i − 1) �X Ωk+i(k + i) → Λk−iE∨(i,−1) → 0. (2.23)

Now we interpret these sequences as mutations. Note that ΛkE(−1, 0) ∼= ΛkE∨(0,−1) which
follows from (2.19).

– For i = 1, the first arrow in (2.23) is the unique (by (2.22)) morphism

ΛkE∨(0,−1) → O �X Ωk+1(k + 1),

therefore its cokernel (up to shift) is the left mutation of the object O �X Ωk+1(k + 1) through
the bundle ΛkE∨(0,−1), and so the result of the mutation is Λk−1E∨(1,−1).
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– For i = 2, the first arrow in (2.23) is the unique morphism

Λk−1E∨(1,−1) → O(1) �X Ωk+2(k + 2),

therefore its cokernel (up to shift) is the left mutation of O(1) �X Ωk+2(k + 2) through the
bundle Λk−1E∨(1,−1), and so the result of the mutation is Λk−2E∨(2,−1). Note here that the
intermediate mutation of O(1) �X Ωk+2(k + 2) through ΛkE∨(0,−1) is trivial, because these
objects are completely orthogonal by (2.22).

Continuing in the same manner, we conclude that the mutation of O(i − 1) �X Ωk+i(k + i)
through 〈ΛkE∨(0,−1), O �X Ωk+1(k + 1), . . . ,O(i − 2) �X Ωk+i−1(k + i − 1)〉 is the same as its
mutation through 〈Λk−i+1E∨(i − 1,−1), . . . ,Λk−1E∨(1,−1), ΛkE∨(0,−1)〉, and the same as its
mutation through the first object Λk−i+1E∨(i − 1,−1). Therefore, it is realized by the exact
sequence (2.23), hence the result of the mutation is Λk−i+1E∨(i − 1,−1).

Thus, we see that the category R is generated by (2.4). Moreover, we see that the only
Ext-spaces between the objects in (2.4) are

Extj−i(ΛiE (0, k − i), ΛjE(0, k − j)) = k, 0 ≤ i ≤ j ≤ k,

Extj−i(ΛiE∨(0, k − i), ΛjE∨(0, k − j)) = k, 0 ≤ i ≤ j ≤ k.

In other words, the configuration of these exceptional objects is the following:

O(−1, k)[−k] �� E(−1, k − 1)[1 − k] �� . . . �� Λk−1E(−1, 1)[−1]
��������

ΛkE(−1, 0) ∼= ΛkE∨(0,−1)

O(k,−1)[−k] �� E∨(k − 1,−1)[1 − k] �� . . . �� Λk−1E∨(1,−1)[−1]

�������

So, this exceptional collection corresponds to shifts of projective modules in a quiver of
Dynkin type A2k+1. �

Remark 2.9. The flag variety X is a homogeneous space for the natural action of the simple
group SL(n + 1) = SL(V ). Using the group-theoretic notation introduced in § 3.1, and denoting
by ωi the highest weight of the fundamental representation ΛiV ∨ ∼= Λn+1−iV , one can rewrite
the exceptional collection of Theorem 2.1 as follows. The first block of the rectangular part A of
the category Db(X) can be written as

A = 〈O, Uω1 , Uωn , U2ω1 , U2ωn , . . . ,Ukω1 , Ukωn〉.

Furthermore, if n = 2k + 1 the residual category R can be written as

R =
〈
U−ω1+kωn , Ukω1−ωn ; U−ω1+ωn−1+(k−2)ωn , U(k−2)ω1+ω2−ωn ; . . .

. . . ; U−ω1+ωn−i+(k−i−1)ωn , U(k−i−1)ω1+ωi+1−ωn ; . . .

U−ω1+ωk+2 , Uωk−ωn ; U−ω1+ωk+1−ωn
〉
.
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Residual categories for (co)adjoint Grassmannians in classical types

3. Type Dn

In this section we prove part (iii) of Theorem 1.9, restated in a more precise form in Theorem 3.1
below. We work over an algebraically closed field k of characteristic zero. Let us point out again
that, unlike in type An, a full exceptional collection in Db(OG(2, 2n)) was not known before.
Throughout this section we assume n ≥ 4.

3.1 Equivariant bundles on homogeneous varieties
We start with a brief reminder about equivariant vector bundles on homogeneous varieties. For
more details see [KP16].

Let G be a connected simply connected semisimple algebraic group. We fix a Borel sub-
group B ⊂ G. Let P ⊂ G be a parabolic subgroup such that B ⊂ P. Recall that there is a
monoidal equivalence of categories between the category of G-equivariant vector bundles on
the homogeneous variety G/P and the category Rep(P) of representations of the parabolic
subgroup P.

Let P � L be the Levi quotient. We identify the category Rep(L) of representations of L
with the subcategory of Rep(P) of representations with the trivial action of the unipotent radical.
This equivalence is compatible with the monoidal structure of the categories.

The image of the Borel subgroup B ⊂ G is a Borel subgroup BL in L. We denote by PL = PG

the weight lattices of L and G with their natural identification, and by

P+
G ⊂ P+

L

the cones of dominant weights with respect to B and BL, respectively. For each λ ∈ P+
L we denote

by Vλ
L the corresponding irreducible representation of L and by Uλ the equivariant vector bundle

on G/P corresponding to it via the above equivalences. Similarly, for λ ∈ P+
G we denote by Vλ

G

the corresponding irreducible representation of G.
We denote by W the Weyl group of G, by WL ⊂ W the Weyl group of L, and by w0 ∈ W

and wL
0 ∈ WL the longest elements.

3.2 Statement of the theorem
Consider the group G = Spin(2n), the simply connected (double) covering

Spin(2n) → SO(2n) (3.1)

of the special orthogonal group, and its maximal parabolic subgroup P ⊂ G corresponding to
the vertex 2 (marked with black) of the Dynkin diagram Dn:

� � �� . . . � �
�

�
���
���

1 2 3 n−3 n−2
n−1

n

(3.2)

In this case the corresponding homogeneous variety is

G/P ∼= OG(2, 2n),

the Grassmannian of two-dimensional isotropic subspaces in a vector space of dimension 2n
endowed with a non-degenerate symmetric bilinear form, that is, the (co)adjoint variety of
type Dn. Note that dim(OG(2, 2n)) = 4n − 7.
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The automorphism group of OG(2, 2n) is the semidirect product

Aut(OG(2, 2n)) ∼=
{

PSO(2n) � S2, if n �= 4,

PSO(2n) � S3, if n = 4,

where the factors S2 and S3 act by outer automorphisms (corresponding to the symmetry of
the Dynkin diagram Dn).

The weight lattice of SO(2n) is the lattice Zn with the standard basis {εi}1≤i≤n, and the
weight lattice of Spin(2n) is its overlattice in Qn generated by the fundamental weights

ωi = ε1 + · · · + εi, 1 ≤ i ≤ n − 2,

ωn−1 = 1
2(ε1 + · · · + εn−1 − εn),

ωn = 1
2(ε1 + · · · + εn−1 + εn).

(3.3)

The Levi group in SO(2n) corresponding to the second vertex of the Dynkin diagram is
isomorphic to GL(2) × SO(2(n − 2)), and the corresponding Levi group in Spin(2n) is the double
covering

L → GL(2) × SO(2(n − 2)) (3.4)

induced by (3.1).
The fundamental weight ω2 (associated with the parabolic P) corresponds to the ample

generator of the Picard group Pic(G/P), so we write

O(1) := Uω2 . (3.5)

Note that the canonical line bundle can be written as

ωOG(2,2n)
∼= OOG(2,2n)(3 − 2n). (3.6)

Furthermore, we use the following notation:

U := (Uω1)∨,

S− := Uωn−1 ,

S+ := Uωn .

(3.7)

Thus, U is the tautological rank-2 bundle of OG(2, 2n), while S± are the spinor bundles
(see [Kuz08, §6]).

Consider the following full triangulated subcategories of Db(OG(2, 2n)):

A := 〈O, U∨, S2U∨, . . . , Sn−3U∨, S−, S+〉,
B := 〈O, U∨, S2U∨, . . . , Sn−3U∨, Sn−2U∨, S−, S+〉.

(3.8)

Note that A ⊂ B and A is Aut(OG(2, 2n))-invariant. Indeed, every object in A is PSO(2n)-
invariant by [Pol11, Lemma 2.2]. Moreover, if n �= 4 the outer automorphisms S2-action
on OG(2, 2n) swaps the spinor bundles S− and S+, while in case n = 4 the outer automorphisms
S3-action permutes S−, S+, and U∨ (and in this case A = 〈O, U∨, S−, S+〉).

1190

https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007090
Downloaded from https://www.cambridge.org/core. Max Planck Institut für Mathematik, on 04 Jun 2021 at 17:38:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007090
https://www.cambridge.org/core


Residual categories for (co)adjoint Grassmannians in classical types

Theorem 3.1. There exists a full exceptional collection

Db(OG(2, 2n)) = 〈U2ωn−1(−1), U2ωn(−1), A,

B(1), . . . ,B(n − 2), A(n − 1), . . . ,A(2n − 4)〉. (3.9)

In particular, the subcategory A extends to an Aut(OG(2, 2n))-invariant rectangular Lefschetz

collection

Db(OG(2, 2n)) = 〈R, A, A(1), . . . ,A(2n − 4)〉. (3.10)

Moreover, the residual category R is generated by an Aut(OG(2, 2n))-invariant excep-

tional collection and is equivalent to the derived category of representations of the Dynkin

quiver Dn.

Remark 3.2. It is easy to see that the exceptional collection (3.9) is mutation equivalent to the
full Lefschetz collection with the starting block

Ei = Si−1U∨, 1 ≤ i ≤ n − 2,

En−1 = S−,

En = S+,

En+1 = R〈S−,S+〉(Sn−2U∨),

En+2 = R〈A(−1),B〉(U2ωn−1(−2)),

En+3 = R〈A(−1),B〉(U2ωn(−2)),

with the next n − 3 blocks generated by E1, . . . , En+1, and with the last n − 1 blocks generated
by E1, . . . , En. Indeed, to prove this we first twist (3.9) by O(−1), then mutate the objects
U2ωn−1(−2), U2ωn(−2) to the right of A(−1) and B, and finally mutate A(−1) to the far right.

Remark 3.3. If n = 3 we have isomorphisms Spin(6) ∼= SL(4) and OG(2, 6) ∼= Fl(1, 3; 4). Fur-
thermore, under these isomorphisms S− ∼= O(1, 0) and S+

∼= O(0, 1), so the definitions of the
category A in (2.2) and (3.8) coincide, hence (2.3) coincides with (3.10).

We prove Theorem 3.1 in §§ 3.4, 3.6 and 3.7 after some preparation.

3.3 Computational tools
To check that a collection of vector bundles is exceptional, we need some tools to dualize the
bundles, take their tensor products, and compute the cohomology.

We start by recalling the general machinery. Recall that the Levi group L is reductive,
hence Rep(L) is a semisimple category; in particular, Vλ

L ⊗ Vμ
L is a direct sum of irreducible

representations of L. Since the functor Vλ
L 
→ Uλ from the category Rep(L) to the category of

equivariant vector bundles on G/P is monoidal, we have the following lemma.

Lemma 3.4 [KP16, (8)]. If Vλ
L ⊗ Vμ

L =
⊕

Vν
L, then Uλ ⊗ Uμ =

⊕
Uν .

Thus, knowing tensor products of L-representations, we can control tensor products of the
corresponding equivariant bundles. Similarly, we can control the dualization operation. Recall
that wL

0 denotes the longest element in WL, the Weyl group of L.
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Lemma 3.5 [KP16, (8)]. We have (Uλ)∨ ∼= U−wL
0 λ.

A combination of the last two lemmas shows that (Uλ)∨ ⊗ Uμ is a direct sum of some Uν .
The summands that show up in this decomposition can be characterized by the following lemma.

Lemma 3.6 [KP16, Lemmas 2.8 and 2.9]. We have

(Uλ)∨ ⊗ Uμ =
⊕

ν∈P+
L∩Conv(μ−wλ)w∈WL

(Uν)⊕m(λ,μ,ν),

where Conv(−) stands for the convex hull and m(λ, μ, ν) ∈ Z≥0 is the multiplicity of Vν
L

in (Vλ
L)∨ ⊗ Vμ

L. Moreover, if ν = 0 then m(λ, μ, ν) �= 0 only when λ = μ and m(λ, λ, 0) = 1.

The most efficient way to compute cohomology is provided by the Borel–Bott–Weil theorem.
Let � : W → Z be the length function and let ρ ∈ P+

G be the sum of fundamental weights of G.

Theorem 3.7 (Borel–Bott–Weil). Let λ ∈ P+
L . If the weight λ + ρ lies on a wall of a Weyl

chamber for the W-action, then

H•(G/P, Uλ) = 0.

Otherwise, if w ∈ W is the unique element such that the weight w(λ + ρ) is dominant, then

H•(G/P, Uλ) = Vw(λ+ρ)−ρ
G [−�(w)].

The Weyl group of Spin(2n) is the semidirect product

W = Sn � (Z/2)n−1,

where Sn acts on PSpin(2n) ⊂ Qn by permutations and (Z/2)n−1 by changes of signs of an even
number of coordinates. The walls of the Weyl chambers are given by the hyperplanes

λi = ±λj , 1 ≤ i �= j ≤ n. (3.11)

The Weyl group of L is the subgroup

WL = S2 × (Sn−2 � (Z/2)n−3),

where S2 acts by transposition of the first two coordinates, Sn−2 by permutations of the
last n − 2, and (Z/2)n−3 by changes of signs of an even number of the last n − 2 coordinates.
The longest element wL

0 ∈ WL acts by

wL
0 (λ1, λ2, λ3, . . . , λn−1, λn) = (λ2, λ1,−λ3, . . . ,−λn−1,−(−1)nλn). (3.12)

Finally, the sum ρ of the fundamental weights in the standard basis takes the form

ρ = (n − 1, n − 2, . . . , 1, 0). (3.13)

Applying the general machinery in our situation, we obtain the following corollaries. First,
combining Lemma 3.5 with (3.3), (3.5), and (3.12), we obtain the following result.

1192

https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007090
Downloaded from https://www.cambridge.org/core. Max Planck Institut für Mathematik, on 04 Jun 2021 at 17:38:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007090
https://www.cambridge.org/core


Residual categories for (co)adjoint Grassmannians in classical types

Corollary 3.8. For a ≥ 0, we have

(Uaω1)∨ = Uaω1(−a).

For a ≥ 0 and even n, we have

(Uaωn−1)∨ = Uaωn−1(−a) and (Uaωn)∨ = Uaωn(−a).

For a ≥ 0 and odd n, we have

(Uaωn−1)∨ = Uaωn(−a) and (Uaωn)∨ = Uaωn−1(−a).

Proof. By (3.3) we have aω1 = (a, 0, 0, . . . , 0). By Lemma 3.5 and (3.12) the weight corresponding
to

(
Uaω1

)∨ is (0,−a, 0, . . . , 0); by (3.3) this is equal to aω1 − aω2, hence the claim. The other
results are proved analogously. �

Similarly, using Lemma 3.4 we deduce the following tensor product decompositions.

Lemma 3.9. We have isomorphisms

Ukω1 ⊗ Ulω1 ∼=
min{k,l}⊕

i=0

U(k+l−2i)ω1(i) for k, l ≥ 0, (3.14)

Ukω1 ⊗ Uλ ∼= Ukω1+λ if λ =
n∑

i=2

λiωi, (3.15)

Λn−2(Uω3−ω2) ∼= U2ωn−1(−1) ⊕ U2ωn(−1). (3.16)

Proof. First, we note that the bundles Ukω1 and Ulω1 correspond to representations of L
pulled back from representations Vk,0

GL2
and Vl,0

GL2
via the map (3.4), so (3.14) follows from the

Clebsch–Gordan rule

Vk1,k2

GL2
⊗ Vl1,l2

GL2
=

min{k1−k2,l1−l2}⊕
j=0

Vk1+l1−j,k2+l2+j
GL2

.

For (3.15) and (3.16) we need a slightly more detailed understanding of the Levi group L.
Let G̃L(2) → GL(2) be the unique connected double covering. Then there is a double covering

G̃L(2) × Spin(2(n − 2)) → L. (3.17)

To understand the tensor product of representations of L it is enough to understand the tensor
product of their pullbacks via the map (3.17).

We will denote by ω′
1, ω′

2 the fundamental weights of G̃L(2) and by ω′
i, 3 ≤ i ≤ n, the fun-

damental weights of Spin(2(n − 2)). The double covering (3.17) induces an embedding of weight
lattices

PL ↪→ P
G̃L(2)

⊕ PSpin(2(n−2))

and identifies the corresponding Q-vector spaces. Therefore, the weights ω′
i can be thought of as

rational weights for L, that is, as rational weights of Spin(2n). It is easy to see that they can be
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expressed in the basis of fundamental weights ωi as follows:

ω′
1 = ω1, ω′

2 = 1
2ω2, ω′

i =

{
ωi − ω2, if 3 ≤ i ≤ n − 2,

ωi − 1
2ω2, if i ∈ {n − 1, n}. (3.18)

By (3.18) the representation Vkω1
L pulls back to Vk,0

G̃L2
, while Vλ

L with λ =
∑n

i=2 λiωi pulls back

to Vc(λ),c(λ)

G̃L(2)
⊗ Vλ′

Spin(2(n−2)), where λ′ =
∑n

i=3 λiω
′
i and c(λ) = 2

∑n−2
i=2 λi + λn−1 + λn. Clearly,

Vk,0

G̃L2
⊗

(
Vc(λ),c(λ)

G̃L(2)
⊗ V λ′

Spin(2(n−2))

) ∼= Vk+c(λ),c(λ)

G̃L(2)
⊗ Vλ′

Spin(2(n−2)),

and the right-hand side corresponds to Vkω1+λ
L . This proves (3.15).

Similarly, Vω3−ω2
L corresponds to Vω′

3

Spin(2(n−2)) (which, according to our conventions, is the
first fundamental representation of Spin(2(n − 2))). By [VO95, Table 5] its middle exterior power
is isomorphic to the direct sum of two irreducible representations with highest weights 2ω′

n

and 2ω′
n−1. By (3.18) these weights correspond to the weights 2ωn − ω2 and 2ωn−1 − ω2, and the

claim follows. This proves (3.16). �

Finally, we deduce from Borel–Bott–Weil a vanishing lemma, on which most semiorthogo-
nality results for OG(2, 2n) in the next section rely.

Lemma 3.10. Let λ = (λ1, . . . , λn) be a dominant weight of L. Assume that one of the following

two conditions holds:

|λi + n − i| < n − 1, for all i, (3.19)

or

|λi + n − i| < n − 2, for all but one i. (3.20)

Then Uλ is acyclic.

Proof. These are special cases of [KP16, Lemma 5.2]; we provide a proof for completeness.
In view of (3.13), if (3.19) holds, then all coordinates of λ + ρ have absolute values less

than n − 1. Therefore, at least two of them have the same absolute values. Similarly, if (3.20)
holds, then all but one of the coordinates of λ + ρ have absolute values less than n − 2. Therefore,
again at least two of them have the same absolute values. In both cases we see that λ + ρ lies on
one of the walls (3.11), and by the Borel–Bott–Weil theorem we conclude that Uλ is acyclic. �

3.4 Exceptional collection
In this section we prove that (3.9) is an exceptional collection. Recall from (3.7) that U denotes
the dual bundle of Uω1 . Consequently, SkU∨ ∼= Ukω1 .

First, we discuss the ‘tautological’ part of the collection. Recall that an exceptional collection
E1, . . . , Ek of vector bundles is strong if Ext>0(Ei, Ej) = 0 for all 1 ≤ i, j ≤ k.
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Residual categories for (co)adjoint Grassmannians in classical types

Lemma 3.11. The collection of vector bundles O, U∨, . . . , Sn−2U∨ is a strong exceptional

collection. Moreover, for 0 ≤ k, l ≤ n − 2 and 1 ≤ t ≤ 2n − 4, we have

Ext•(SkU∨(t), SlU∨) =

⎧⎪⎨⎪⎩
k[4 − 2n], if k = l = n − 2, t = n − 2,

k[3 − 2n], if k = l = n − 2, t = n − 1,

0, otherwise.

Proof. We will show that Ext•(SkU∨(t), SlU∨) is zero for 0 ≤ k, l ≤ n − 2 and 0 ≤ t ≤ 2n − 4,
except for t = 0, k ≤ l and t ∈ {n − 2, n − 1}, k = l = n − 2. By (3.6) and Serre duality we can
assume 0 ≤ t ≤ n − 2.

By Corollary 3.8 and (3.14) we have

(SkU∨(t))∨ ⊗ SlU∨ ∼= SkU∨(−k − t) ⊗ SlU∨

∼=
min{k,l}⊕

j=0

Sk+l−2jU∨(j − k − t) =
min{k,l}⊕

j=0

U(l−j−t,j−k−t,0,...,0).

So, it is enough to compute the cohomology of bundles Uλ with λ = (l − j − t, j − k − t, 0, . . . , 0),
so that

2 − n ≤ λ1 ≤ n − 2, 4 − 2n ≤ λ2 ≤ 0, λ3 = · · · = λn = 0.

It is convenient to distinguish three cases.

Case 1. If 4 − 2n < λ2 < 0, then |λi + n − i| < n − 2 for all i ≥ 2. Hence, (3.20) holds and Uλ is
acyclic by Lemma 3.10.

Case 2. If λ2 = 0, then we necessarily have t = 0 and j = k. Further, since j ≤ l, we obtain
k ≤ l. In particular, the weight λ is dominant, hence H>0(OG(2, 2n), Uλ) = 0. Moreover, if k = l,
then λ = 0 and in this case the cohomology of Uλ is isomorphic to k[0].

A combination of cases 1 and 2 proves that O, U∨, . . . , Sn−2U∨ is a strong exceptional
collection.

Case 3. If λ2 = 4 − 2n, then we necessarily have k = t = n − 2 and j = 0. In this case we have
inequalities 2 − n ≤ λ1 ≤ 0.

If λ1 < 0, then |λi + n − i| < n − 1 for all i. Hence (3.19) holds and Uλ is acyclic by
Lemma 3.10.

If λ1 = 0, then l = n − 2, and we have Uλ = U(0,4−2n,0,...,0). In this case the Borel–Bott–Weil
theorem implies that the cohomology of Uλ is isomorphic to k[4 − 2n]. Indeed, we have
λ + ρ = (n − 1, 2 − n, n − 3, . . . , 0) = wρ, where

w = (s2 · . . . · sn−2) · sn−1 · sn · (sn−2 · . . . · s2)

and si are the simple reflections. This completes the proof of the lemma. �

Next, we discuss the ‘spinor’ part of the collection.

Lemma 3.12. The collection of sheaves Uωn−1 , Uωn , U2ωn−1 , U2ωn , {Uωn−1(t), Uωn(t)}1≤t≤2n−4 is

exceptional.
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A. Kuznetsov and M. Smirnov

Proof. We will compute Ext•(Uaωi(t), Ubωj ) where i, j ∈ {n − 1, n}, and

– either a, b ∈ {1, 2} and (a, b) �= (2, 2), and 1 ≤ t ≤ 2n − 4,
– or a, b ∈ {1, 2} and (a, b) �= (1, 2), and t = 0.

By (3.6) and Serre duality we can assume 0 ≤ t ≤ n − 2.
We take λ = aωi + tω2 = (t + a/2, t + a/2, a/2, . . . , a/2,±a/2) and μ = bωj = (b/2, b/2, b/2,

. . . , b/2,±b/2); the signs of the last coordinate depend on whether i and j are n − 1 or n. Since
the WL-orbit of λ consists of points (t + a/2, t + a/2,±a/2, . . . ,±a/2,±a/2) (with the parity of
the number of negative signs depending on i), by Lemma 3.6 we have

(Uλ)∨ ⊗ Uμ =
⊕

ν

(Uν)⊕m(λ,μ,ν), (3.21)

where ν runs over the integral or half-integral points satisfying

ν1 = ν2 =
b − a

2
− t, ν3, . . . , νn−1 =

b ± a

2
∈

[
− 1

2
, 2

]
, νn =

±b ± a

2
∈ [−2, 2].

(In fact we could further restrict the combinations of signs that appear in ν, but since we are
interested in an upper bound on direct summands of (Uλ)∨ ⊗ Uμ, we can neglect this.) It is
convenient to distinguish three cases.

Case 1. If 1 ≤ t ≤ n − 2 and (a, b) �= (2, 2), then

ν1 = ν2 ∈ [
3
2 − n,−1

2

]
, ν3, . . . , νn−1, νn ∈ [ − 3

2 , 3
2

]
,

For any such point we have |νi + n − i| < n − 1 for all i, hence (3.19) holds for ν and, therefore,
all summands in (3.21) are acyclic by Lemma 3.10.

Case 2. If t = 0 and a > b, then

ν1 = ν2 = −1
2 , ν3, . . . , νn−1 ∈ [ − 1

2 , 3
2

]
, νn ∈ [ − 3

2 , 3
2

]
.

For any such point we still have |νi + n − i| < n − 1 for all i, hence again all summands in (3.21)
are acyclic.

Case 3. If t = 0 and a = b, then

ν1 = ν2 = 0, ν3, . . . , νn−1 ∈ [0, 2], νn ∈ [−2, 2].

It is easy to see that the only non-acyclic bundle among Uν is the trivial bundle. Indeed, if
ν̃ = ν + ρ then (ν̃1, ν̃2) = (n − 1, n − 2) and n − 1 ≥ ν̃3 ≥ · · · ≥ ν̃n−1 ≥ 1, and the only possibility
to satisfy these restriction and avoid the walls (3.11) is to have ν̃i = n − i for 1 ≤ i ≤ n − 1.
Finally, 0 ≤ ν̃n ≤ 2, and since n ≥ 3, it must be zero to avoid the walls. By Lemma 3.6 the
trivial bundle is a summand of (Uλ)∨ ⊗ Uμ only when λ = μ and then its multiplicity is equal
to 1. Hence, in this case we have Ext•(Uλ, Uμ) = k[0]. This completes the proof of the lemma. �

In the next two lemmas we show that the ‘tautological’ part of the collection can be merged
with the ‘spinor’ part.

Lemma 3.13. We have Ext•(Uωj (t), SkU∨) = 0 for all 0 ≤ k ≤ n − 2, all j ∈ {n − 1, n}, and all

0 ≤ t ≤ 2n − 4.
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Residual categories for (co)adjoint Grassmannians in classical types

Proof. By Corollary 3.8 and (3.15) we have

(Uωj (t))∨ ⊗ SkU∨ ∼= Uωj′−(t+1)ω2 ⊗ Ukω1 ∼= Ukω1−(t+1)ω2+ωj′ ,

where j′ = j if n is even and j′ = 2n − 1 − j if n is odd. So, it is enough to compute the
cohomology of bundles Uλ with

λ =
(
k − t − 1

2 ,−t − 1
2 , 1

2 , . . . , 1
2 ,±1

2

)
.

If 0 ≤ t ≤ 2n − 5, then |λi + n − i| < n − 2 for i ≥ 2. Hence (3.20) holds and the bundle Uλ is
acyclic by Lemma 3.10. Similarly, if t = 2n − 4, then we have |λi + n − i| < n − 1 for all i. Hence
condition (3.19) holds and the bundle Uλ is acyclic by Lemma 3.10. �

Lemma 3.14. If 0 ≤ k ≤ n − 2, j ∈ {n − 1, n}, and 1 ≤ t ≤ 2n − 2, then

Ext•(SkU∨(t), U2ωj ) =

⎧⎪⎨⎪⎩
k[5 − 3n], if k = n − 2 and t = n,

k[2 − n], if k = n − 2 and t = 1,

0, otherwise.

In fact, using isomorphisms of Corollary 3.8 and Serre duality it is possible to identify one
non-trivial Ext-space above with the dual of the other.

Proof. As before, we have

(SkU∨(t))∨ ⊗ U2ωj ∼= SkU∨(−k − t) ⊗ U2ωj ∼= Ukω1−(k+t)ω2+2ωj .

So, it is enough to compute the cohomology of the bundle Uλ with

λ = (1 − t, 1 − k − t, 1, . . . , 1,±1).

For this we directly apply the Borel–Bott–Weil theorem. We have

λ + ρ = (n − t, n − 1 − k − t, n − 2, . . . , 2,±1).

It is convenient to distinguish several cases.

Case 1. If 2 ≤ t ≤ 2n − 2 and t �= n, then the absolute value of the first coordinate of λ + ρ is
equal to the absolute value of one of the last n − 2 coordinates. Hence, the bundle Uλ is acyclic.

Case 2. If t = n and 0 ≤ k ≤ n − 3, then n − 1 − k − t = −k − 1, and the absolute value of the
second coordinate of λ + ρ is equal to the absolute value of one of the last n − 2 coordinates.
Hence, Uλ is acyclic.

Case 3. If t = n and k = n − 2, then λ + ρ = (0, 1 − n, n − 2, . . . , 2,±1) = wρ, where

w = (sn−1 · sn−2 · . . . · s2) · s1 · (s2 · . . . · sn−2) · sn−1 · sn · (sn−2 · . . . · s2)
and si are the simple reflections. By the Borel–Bott–Weil theorem the cohomology of the
bundle Uλ equals k[5 − 3n].

Case 4. If t = 1 and 0 ≤ k ≤ n − 3, then n − 1 − k − t = n − 2 − k, and the absolute value of the
second coordinate of λ + ρ is equal to the absolute value of one of the last n − 2 coordinates.
Hence, Uλ is acyclic.
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Case 5. If t = 1 and k = n − 2, then λ + ρ = (n − 1, 0, n − 2, . . . , 2,±1) = wρ, where

w = sn−1 · sn−2 · . . . · s2
and si are the simple reflections. By the Borel–Bott–Weil theorem the cohomology of the
bundle Uλ equals k[2 − n]. This completes the proof of the lemma. �

Now we deduce the following result.

Proposition 3.15. The collection (3.9) is exceptional.

Proof. A combination of Lemmas 3.11–3.14, and Serre duality proves the proposition. �

3.5 Some useful complexes
In this section we construct some exact sequences and complexes that will be used to check that
the collection (3.9) is full.

Let V be a vector space of dimension 2n ≥ 8 endowed with a non-degenerate symmetric
bilinear form and let OG(2, V ) = OG(2, 2n) be the corresponding even orthogonal Grassmannian.
We denote by V = V ⊗ O the trivial vector bundle with fiber V . Note that V and V are canonically
self-dual (via the chosen symmetric bilinear form on V ). We have the tautological short exact
sequence on OG(2, 2n),

0 → U → V → V/U → 0,

and its dual,

0 → U⊥ → V → U∨ → 0.

Taking exterior powers of the above sequences, we obtain the long exact sequences

0 → SmU → V ⊗ Sm−1U → Λ2V ⊗ Sm−2U → · · ·
· · · → Λm−1V ⊗ U → ΛmV ⊗ O → Λm(V/U) → 0 (3.22)

and

0 → ΛmU⊥ → ΛmV ⊗ O → Λm−1V ⊗ U∨ → · · ·
· · · → Λ2V ⊗ Sm−2U∨ → V ⊗ Sm−1U∨ → SmU∨ → 0. (3.23)

Recall notation (3.7) for spinor bundles. We denote their spaces of global sections by

S− := H0(OG(2, V ), S−) = Vωn−1

Spin(2n), S+ := H0(OG(2, V ), S+) = Vωn

Spin(2n)

(the half-spinor representations of Spin(2n)). We set

Wi =
�i/2�⊕
s=0

Λi−2sV. (3.24)

We will combine (3.22) and (3.23) to prove the following proposition.
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Residual categories for (co)adjoint Grassmannians in classical types

Proposition 3.16. On OG(2, 2n) there exists an exact sequence

0 → Sn−2U → W1 ⊗ Sn−3U → W2 ⊗ Sn−4U → · · ·
· · · → Wn−2 ⊗ O → S+ ⊗ S+ ⊕S−⊗ S− → Wn−2 ⊗ O(1) → · · ·

· · · → W2 ⊗ Sn−4U∨(1) → W1 ⊗ Sn−3U∨(1) → Sn−2U∨(1) → 0. (3.25)

Proof. If n is even, we apply [Kuz08, Proposition 6.7] and conclude that there is a filtration on
the bundle S+ ⊗ S∨

+ ⊕ S− ⊗ S∨− with factors of the form Λ2sU⊥, where 0 ≤ s ≤ n − 1. Tensoring
by O(1) and taking into account the isomorphisms

S∨
+(1) ∼= S+, S∨

−(1) ∼= S−

(Corollary 3.8), we obtain a filtration on S+ ⊗ S+ ⊕ S− ⊗ S− with factors of the form Λ2sU⊥(1),
where 0 ≤ s ≤ n − 1.

Similarly, if n is odd, the argument of [Kuz08, Proposition 6.7] proves that there is a filtration
on S+ ⊗ S∨− ⊕ S− ⊗ S∨

+ with factors of the form Λ2s+1U⊥, where 0 ≤ s ≤ n − 2. Tensoring by O(1)
and taking into account isomorphisms

S∨
+(1) ∼= S−, S∨

−(1) ∼= S+,

we finally obtain a filtration on S+ ⊗ S+ ⊕ S− ⊗ S− with factors of the form Λ2s+1U⊥(1), where
we have 0 ≤ s ≤ n − 2.

Thus, in both cases we have a filtration on S+ ⊗ S+ ⊕ S− ⊗ S− with factors

Λ2n−2−rU⊥(1), Λ2n−4−rU⊥(1), . . . ,ΛnU⊥(1), Λn−2U⊥(1), . . . ,Λ2+rU⊥(1), ΛrU⊥(1),

where r = 0 if n is even and r = 1 if n is odd. Note that the total number of factors n − r is
even in both cases. This means that there is an exact sequence of vector bundles

0 → F− → S+ ⊗ S+ ⊕S−⊗ S− → F+ → 0,

where F− has a filtration with factors Λ2n−2−rU⊥(1), Λ2n−4−rU⊥(1), . . . ,ΛnU⊥(1) and F+ has
a filtration with factors Λn−2U⊥(1), . . . ,Λ2+rU⊥(1), ΛrU⊥(1). So, it is enough to show that F−
has a left resolution given by the first half of (3.25), and that F+ has a right resolution given by
the second half of (3.25).

Indeed, each factor of the filtration of F− can be rewritten as

Λn+2kU⊥(1) ∼= Λn−2−2k(V/U),

where 0 ≤ k ≤ (n − 2 − r)/2, hence has the resolution (3.22) with m = n − 2 − 2k. Since by
Lemma 3.11 the exceptional collection {SiU}n−2

i=0 is strong, the extensions of the filtration factors
Λn+2kU⊥(1) in F− can be realized by a bicomplex with rows given by (3.22) with m = n − 2 − 2k

shifted by −k. The totalization of this bicomplex can be written as

Sn−2U → W1 ⊗ Sn−3U → W2 ⊗ Sn−4U → · · · → Wn−2 ⊗ O

and thus provides a left resolution for F−.
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Similarly, each factor Λn−2−2kU⊥(1) of the filtration of F+ has resolution (3.23) twisted
by O(1) (where m = n − 2 − 2k), and the above argument shows that F+ has the right resolution

Wn−2 ⊗ O(1) → · · · → W2 ⊗ Sn−4U∨(1) → W1 ⊗ Sn−3U∨(1) → Sn−2U∨(1).

This completes the proof of the proposition. �

Note that the composition of morphisms U → V → U∨ is zero, hence U ⊂ U⊥. Moreover,

U⊥/U ∼= Uω3−ω2 . (3.26)

We will need the following lemma.

Lemma 3.17. For any m ≤ 2n − 4 on OG(2, 2n) there exists a double complex

ΛmV ⊗ O �� Λm−1V ⊗ U∨ �� Λm−2V ⊗ S2U∨ �� . . . �� V ⊗ Sm−1U∨ �� SmU∨

Λm−1V ⊗ U ��

��

Λm−2V ⊗ U ⊗ U∨ ��

��

Λm−3V ⊗ U ⊗ S2U∨ ��

��

. . . �� U ⊗ Sm−1U∨

��

. . .

��

. . .

��

. . .

��

...

Λ2V ⊗ Sm−2U ��

��

V ⊗ Sm−2U ⊗ U∨ ��

��

Sm−2U ⊗ S2U∨

��

V ⊗ Sm−1U ��

��

Sm−1U ⊗ U∨

��

SmU

��

whose total complex has only one non-trivial cohomology sheaf in the middle term isomorphic

to Λm(U⊥/U).

Proof. The bicomplex is just the mth exterior power of the complex

U → V → U∨,

which is quasi-isomorphic to U⊥/U, hence the claim (cf. the argument of [Kuz08, Lemma 7.3]).
�

Finally, we will need the following lemma from [Kuz08].

Lemma 3.18 [Kuz08, Proposition 6.3]. There exists a complex

0 → S− → S−⊗O(1) → S−(1) → 0

whose only non-trivial cohomology group is in the middle term and is isomorphic to S+ ⊗ U∨.

3.6 Fullness
The proof of the fullness of the collection (3.9) goes via restriction to odd orthogonal
Grassmannians OG(2, 2n − 1), and is similar to the proofs of fullness given in [Kuz08].
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For technical reasons it is more convenient to work with the collection

A(2 − n), . . . ,A(−1), U2ωn−1(−1), U2ωn(−1), A, B(1), . . . ,B(n − 2). (3.27)

By Serre duality, exceptionality of (3.9) implies exceptionality of (3.27). Conversely, fullness
of (3.27) implies fullness of (3.9).

We will deduce fullness of (3.27) from the following key lemma.

Lemma 3.19. Let E be the set of bundles appearing in (3.27) and let E′ be its subset defined

as

E′ := {SkU∨(t), S+(t) | 0 ≤ k ≤ n − 3, 2 − n ≤ t ≤ n − 3} ⊂ E. (3.28)

Then for any object E ∈ E ′ we have

E ⊗ O(1) ∈ 〈E〉, (3.29)

E ⊗ U∨ ∈ 〈E〉. (3.30)

Proof. The inclusion (3.29) follows immediately from comparison of (3.28), (3.8) and (3.27).
Thus, we concentrate here on the inclusion (3.30).

We split objects E ∈ E′ into two classes:

– S+(t) with t ∈ [2 − n, n − 3] (spinor bundles), and
– SkU∨(t) with k ∈ [0, n − 3] and t ∈ [2 − n, n − 3] (tautological bundles),

and treat these separately.
The class of spinor bundles is easy: from Lemma 3.18 we conclude

S+(i) ⊗ U∨ ∈ 〈S−(i), O(i + 1), S−(i + 1)〉,

and the inclusion (3.30) for E = S+(i) follows.
The class of tautological bundles is a bit more tedious. First, note that by (3.14) we have

SkU∨ ⊗ U∨ = Sk+1U∨ ⊕ Sk−1U∨(1).

Thus, the inclusion (3.30) would follow from the inclusions

SjU∨(t) ∈ 〈E〉, 0 ≤ j ≤ n − 2, 2 − n ≤ t ≤ n − 2. (3.31)

So, by proving these inclusions, we will prove the lemma.
For j ≤ n − 3 and for j = n − 2, 1 ≤ t ≤ n − 2, the inclusions (3.31) follow immediately

from (3.27). Furthermore, using (3.25) twisted by O(n − 2 + t) and isomorphisms

SlU � SlU∨(−l),

we deduce (3.31) for j = n − 2 and 2 − n ≤ t ≤ −1.
So, it only remains to show that

Sn−2U∨ ∈ 〈E〉.
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For this we consider the double complex of Lemma 3.17 with m = n − 2. Using the direct sum
decompositions

SkU∨ ⊗ SlU ∼=
min{k,l}⊕

j=0

Sk+l−2jU∨(j − l)

and the cases of the inclusion (3.31) proved above, we see that all the terms of the double complex
with a possible exception for the rightmost term Sn−2U∨ are contained in the subcategory
generated by E. By (3.16) and (3.26) the unique cohomology sheaf

U2ωn−1(−1) ⊕ U2ωn(−1)

of the double complex is contained in 〈E〉, therefore the last term Sn−2U∨ is in the subcategory
generated by E. �

Let

v ∈ H0(OG(2, 2n), U∨) = V ∨ ∼= V

be any non-zero global section and let v⊥ ⊂ V be the orthogonal complement of v. The restriction
of the bilinear form to v⊥ is non-degenerate if and only if v is non-isotropic. In this case the zero
locus of v (considered as a section of U∨) is the odd orthogonal Grassmannian

OG(2, v⊥) ∼= OG(2, 2n − 1),

and we have the natural closed embedding

iv : OG(2, v⊥) → OG(2, V )

and the Koszul resolution

0 → O(−1) → U → O → iv∗OOG(2,v⊥) → 0. (3.32)

The union of OG(2, v⊥) for non-isotropic v ∈ V sweeps OG(2, V ), hence we have the following
lemma.

Lemma 3.20 [Kuz08, Lemma 4.5]. If for an object F ∈ Db(OG(2, 2n)) the restrictions i∗vF
vanish for all non-isotropic v ∈ V , then F = 0.

Now we are finally ready to prove the fullness of (3.27).

Proposition 3.21. If F ∈ Db(OG(2, V )) is right-orthogonal to all the vector bundles E in the

collection (3.27) (i.e. Ext•(E, F ) = 0), then F = 0.

Proof. The assumption of the proposition can be rewritten as

Ext•(E, F ) = H•(OG(2, V ), E∨ ⊗ F ) = 0 ∀E ∈ E. (3.33)

Now take any non-isotropic vector v and any bundle E ∈ E′, and tensor (3.32) by E∨ ⊗ F . We
obtain an exact sequence

0 → O(−1) ⊗ E∨ ⊗ F → U ⊗ E∨ ⊗ F → E∨ ⊗ F → iv∗i∗v(E
∨ ⊗ F ) → 0. (3.34)
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From Lemma 3.19 and (3.33) it follows that the cohomology groups of the first three terms of this
complex vanish. Hence, also the cohomology of iv∗i∗v(E∨ ⊗ F ) has to vanish, and we conclude
that

H•(OG(2, V ), iv∗i∗v(E
∨ ⊗ F )) = H•(OG(2, v⊥), i∗v(E

∨ ⊗ F )) = Ext•(i∗vE, i∗vF ) = 0 (3.35)

for any E ∈ E′. In other words, the object i∗vF is orthogonal to all objects i∗vE for E ∈ E′.
Set

C := 〈O, i∗v(U
∨), . . . , i∗v(S

n−3U∨), i∗v(S+)〉 ⊂ Db(OG(2, v⊥)).

Since i∗v(U∨) is the dual tautological bundle and i∗v(S+) is the spinor bundle on the odd orthogonal
Grassmannian OG(2, v⊥) ∼= OG(2, 2n − 1), it follows from [Kuz08, Theorem 7.1] that there is a
semiorthogonal decomposition

Db(OG(2, 2n − 1)) = 〈C, C(1), . . . ,C(2n − 5)〉. (3.36)

Twisting it by O(2 − n), we obtain a semiorthogonal decomposition

Db(OG(2, 2n − 1)) = 〈C(2 − n), . . . ,C(−1), C, C(1), . . . ,C(n − 3)〉. (3.37)

Thus, the definition of the set E′ implies that the objects i∗vE for E ∈ E′ generate the
category Db(OG(2, v⊥)), hence (3.35) implies that i∗vF = 0. Since this holds for any
non-isotropic v, it follows from Lemma 3.20 that F = 0. �

3.7 Residual category
For 1 ≤ i ≤ n − 2 we define Fi to be the stupid right truncation of complex (3.25) after n − 1 − i

terms (counting from the left). In other words, the objects Fi are defined by the following exact
sequences:

0 → Sn−2U∨(2 − n) → Fn−2 → 0,

0 → Sn−2U∨(2 − n) → W1 ⊗ Sn−3U∨(3 − n) → Fn−3 → 0,

...

0 → Sn−2U∨(2 − n) → W1 ⊗ Sn−3U∨(3 − n) → · · · → Wn−3 ⊗ U∨(−1) → F1 → 0.

(3.38)

Since (3.25) is exact, the objects Fi are also quasi-isomorphic to the stupid left truncations of
the complex (3.25); in other words, we also have exact sequences

0 →Fn−2 → W1 ⊗ Sn−3U∨(3 − n) → · · · → W1 ⊗ Sn−3U∨(1) → Sn−2U∨(1) → 0,

0 →Fn−3 → W2 ⊗ Sn−4U∨(4 − n) → · · · → W1 ⊗ Sn−3U∨(1) → Sn−2U∨(1) → 0,

...

0 →F1 → Wn−2 ⊗ O → · · · → W1 ⊗ Sn−3U∨(1) → Sn−2U∨(1) → 0.

(3.39)

We will check that the objects F1, . . . , Fn−2 together with the objects U2ωn−1(−1), U2ωn(−1)
form a full exceptional collection in the residual category. We denote by L the left mutation
functors.
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Lemma 3.22. We have

L〈A,A(1),...,A(i)〉(Sn−2U∨(i)) ∼= Fi(i − 1)[n − 1 + i].

Proof. To prove the claim it is enough to show the following two facts:

– the object Fi(i − 1)[n − 1 + i] is contained in the orthogonal 〈A, A(1), . . . ,A(i)〉⊥;
– there exists a morphism Sn−2U∨(i) → Fi(i − 1)[n − 1 + i], whose cone lies in the category

〈A, A(1), . . . ,A(i)〉.
Twisting (3.38) by O(i − 1) and using the semiorthogonality of (3.9), we deduce the first

of these facts. On the other hand, considering (3.39) twisted by O(i − 1) as a Yoneda exten-
sion of the vector bundle Sn−2U∨(i) by Fi(i − 1) of length n − 1 + i, that is, as a morphism
Sn−2U∨(i) → Fi(i − 1)[n − 1 + i], we conclude that its cone is quasi-isomorphic to the subcom-
plex of middle terms, hence belongs to the subcategory 〈A, A(1), . . . ,A(i)〉. This proves the
second fact. �

Thus, we have the following description for the residual category:

R = 〈U2ωn−1(−1), U2ωn(−1), F1, F2(1), . . . , Fn−2(n − 3)〉. (3.40)

Remark 3.23. For n �= 4 the exceptional collection in (3.40) is Aut(OG(2, 2n))-invariant.
For n = 4 it takes form S2S−(−1), S2S+(−1), (V ⊗ U)/S2U, S2U∨(−1). Mutating the third
object to the right, we obtain an Aut(OG(2, 8))-invariant exceptional collection

R = 〈S2S−(−1), S2S+(−1), S2U∨(−1), T̃ (−1)〉,

where the bundle T̃ is defined by the exact sequence 0 → O → T̃ → T → 0 and T is the tangent
bundle.

It remains to compute the Ext-spaces between the objects of (3.40).

Lemma 3.24. We have

Ext•(Fi(i − 1), Fj(j − 1)) =

{
k, if j = i + 1 or j = i,

0, otherwise.

Furthermore, we have

Ext•(U2ωn−1(−1), Fj(j − 1)) = Ext•(U2ωn(−1), Fj(j − 1)) =

{
k[−1], if j = 1,

0, otherwise.

Proof. We start with the first claim. Since we already know that (3.40) is an exceptional
collection, we may assume i < j. From (3.39) twisted by O(i − 1) we deduce

Fi(i − 1) ∈ 〈A, A(1), . . . ,A(i − 1), B(i)〉,

and from (3.38) twisted by O(j − 1) and with i replaced by j we deduce

Fj(j − 1) ∈ 〈B(j − n + 1), A(j − n + 2), . . . ,A(−1)〉. (3.41)
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Using an appropriate twist of (3.9), one easily sees that non-trivial Exts can only come from

Ext•(Sn−2U∨(i), Sn−2U∨(j − n + 1)).

By Lemma 3.11 this space is non-zero (and is isomorphic to k[4 − 2n]) only if j = i + 1 and the
claim follows.

For the second claim, using the inclusion (3.41), we see that non-trivial Exts can only come
from

Ext•(U2ωε(−1), Sn−2U∨(i − n + 1)),

where ε ∈ {n − 1, n}. By Lemma 3.14 and Serre duality this space is non-zero (and is isomorphic
to k[2 − n]) only if i = 1, and the claim follows. �

The above lemma shows that the residual category is equivalent to the derived category of
representations of a Dynkin quiver of type Dn and Remark 3.23 shows that it is generated by an
exceptional collection invariant under all automorphisms of OG(2, 2n). This completes the proof
of Theorem 3.1.
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